Appendix Z

FINAL REPORT

Immunotoxicological Evaluation of Gasoline Ethanol Vapor Condensate Using the Plaque-Forming Cell Assay

Test Substance:	Gasoline Ethanol Vapor Condensate
Protocol No:	HLS 00-6127
Subcontractor's Sponsor:	Huntingdon Life Sciences Mettlers Road East Millstone, NJ 08875 (732) 873-2550 <i>Phone</i> (732) 873-3992 <i>Fax</i>
Contractor's Study Director:	Gary M. Hoffman, B.A., D.A.B.T.
Sponsor:	American Petroleum Institute 1200 L Street, NW Washington, DC 20005
Sponsor's Representative:	Thomas Gray, M.S., D.A.B.T.
ImmunoTox [®] , Inc. Project Number:	ITI 701
Security:	Industrial Confidential
Date:	18 September 2009
Principal Investigator:	Kimber L. White, Jr., Ph.D.
Studies conducted at:	ImmunoTox [®] , Inc. Virginia Bio•Technology Research Park 800 East Leigh Street, Suite 209 Richmond, VA 23219-1534 (804) 828-6880 <i>Phone</i> (804) 828-6881 <i>Fax</i>

ITI Study No. ITI 701 Security: Industrial Confidential

I. STATEMENT OF COMPLIANCE

This study was conducted in compliance with the United States Environmental Protection Agency's (EPA) Good Laboratory Practice Standards 79.60, CFR Vol. 59, No. 122, 27 June 1994 with the following exceptions:

- 1. It was the Sponsor's responsibility to maintain the methods of synthesis, fabrication, or derivation of the test fuel. This had not been completed when the study initiated but is currently with the Sponsor.
- 2. The identity, strength, purity and composition or other characteristics to define the positive control article have not been determined by the Testing Facility. The positive control article has not been characterized as per the Certificate of analysis on file with the Testing Facility. The stability of the positive control article has not been determined by the Testing Facility. Analyses to determine the uniformity (as applicable) or concentration of the positive control article mixture were not performed by the Testing Facility. The stability of the positive control article mixture has not been determined by the Testing Facility.

Gary M. Hoffman, B.A., D.A.B.T. Study Director

Fmis Date

Protocol No. 00-6217 Abbreviated Title: Immunological Evaluation of Gasoline Ethanol Vapor Condensate ITI Study No. ITI 701 Security: Industrial Confidential

II. QUALITY ASSURANCE STATEMENT

Test Substance: Gasoline Ethanol Vapor Condensate

Report Title: Immunotoxicological Evaluation of Gasoline Ethanol Vapor Condensate Using the Plaque-Forming Cell Assay

Protocol Title: Gasoline Ethanol Vapor Condensate: A 13-Week Whole-Body Inhalation Toxicity Study in the Rats with Neurotoxicity Assessments And 4-Week *In Vivo* Genotoxicity and Immunotoxicity Assessments

Huntingdon Life Sciences, Inc. Study No. 00-6127 Sponsor Study No. 211-EtOH-S

The final report for the indicated protocol has been reviewed by the Quality Assurance Unit of Virginia Commonwealth University. Furthermore, the Quality Assurance Unit has conducted the following inspections and reported to the ImmunoTox®, Inc. Principal Investigator, and then has submitted written reports of said inspections to the Study Director and Management via the Principal Investigator.

Inspection/Audits were performed and reported on the following dates:

Performed	Reported	Activity	
June 20, 2001	June 20, 2001	AFC Assay	
October 31-November 6, 2001	November 8, 2001	Data Audit	
November 5-7, 2001	November 8, 2001	1 st Draft Report	

Approved and submitted by:		fer y	16 Septe	mhero
	O	0		

Office of Research * Quality Assurance Unit * Box 980568 * Richmond, Virginia 23298 0568 * (804) 828-6587 * Fax (804) 828-5604

Page 3 of 29

HUNTINGDON LIFE SCIENCES QUALITY ASSURANCE STATEMENT

Listed below are the dates that this study was inspected by the Quality Assurance Unit of Huntingdon Life Sciences, East Millstone, New Jersey, and the dates that findings were reported to the Study Director and Management. This report reflects the raw data as far as can be reasonably established.

Type of Inspection	Date(s) of Inspection	Reported to Study Director and Management
General Facility Inspection	26 Sep 00	5 Dec 00
GLP Protocol Review	1 & 2 Feb 01	8 Feb 01
Dose Immunotoxicity Animals	15 Jun 01	15 Jun 01
Exposure & Monitoring	15 Jun 01	15 Jun 01
Immunotoxicity Necropsy	19 Jun 01	21 Jun 01

26 10

Fran Jannone, B.A., RQAP-GLP Quality Assurance Group Leader

Date

Protocol No. 00-6217 Abbreviated Title: Immunological Evaluation of Gasoline Ethanol Vapor Condensate

ITI Study No, ITI 701 Security: Industrial Confidential

111. SIGNATURE OF PRINCIPALS

This report describes the results used to evaluate the relative immunotoxicological potential of the test substance, Gasoline Ethanol Vapor Condensate, which was administered by inhalation via whole-body exposure to female Sprague Dawley rats.

Kimber L. White, Jr., Ph.D., Principal Investigator, was responsible for the overall conduct of the immunotoxicity evaluations in this study. Vanessa L. Peachee, M.S., served as the Assistant Principal Investigator and was responsible for the day-to-day activities of the immunotoxicity evaluations in this study.

Kimber L. White, Jr., Ph.D. Principal Investigator ImmunoTox[®], Inc.

Vanessa L. Peachee, M.S. Assistant Principal Investigator ImmunoTox®, Inc.

Approved:

Gary M. Hoffman, B.A., DABT Study Director Huntingdon Life Sciences

unha I. Whity Date 18 Sq. 99 UDa Meachele Date 18 Jp 19

Page 5 of 29

TABLE OF CONTENTS

۱.	GL	P Compliance Statement2
11.	Qu	ality Assurance Statements
	lm	munoTox®, Inc3
	Hu	ntingdon Life Sciences
III.	Sig	nature of Principals
IV.	Ex	ecutive Summary8
v.	Int	roduction
VI.	Me	thods of Procedure
	E	Experimental Design
	١	/ariables Assessed
		Terminal Body and Organ Weights
		Splenocyte Preparation
		Spleen IgM Antibody Response to the T-dependent Antigen, sRBC. Day 4 Response 12
	E	Data
		Data Handling and Statistical Analysis
		Data Retention
VII.	Re	sults
	٦	erminal Body and Organ Weights14
	S	Spleen IgM Antibody Response to the T-dependent Antigen, sRBC. Day 4 Response 16
VIII.	Со	nclusion
IX.	Re	ferences
Х.	Lis	t of Figures
	1.	Absolute (mg) and Relative (%) Spleen Weight in Female Sprague Dawley Rats Exposed
		to Gasoline Ethanol Vapor Condensate via Inhalation for 5 Days per Week for 4
		Weeks15
	2.	Absolute (mg) and Relative (%) Thymus Weight in Female Sprague Dawley Rats
		Exposed to Gasoline Ethanol Vapor Condensate via Inhalation for 5 Days per Week for
		4 Weeks
	3.	Spleen Cell Number in Female Sprague Dawley Rats Exposed to Gasoline Ethanol Vapor
		Condensate via Inhalation for 5 Days per Week for 4 Weeks

XI. List of Tables

- 1. Body Weight (g) and Organ Weights (mg) in Female Sprague Dawley Rats Exposed to Gasoline Ethanol Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks.. 22

APPENDICES

- A Individual Animal Data
- B Contracting Sponsor's Exposure and Animal Data

IV. EXECUTIVE SUMMARY

The study was conducted as part of Huntingdon Life Sciences (HLS) Study No. 00-6127 at ImmunoTox[®], Inc., Richmond, Virginia. The Principal Investigator was Kimber L. White, Jr., Ph.D., and Vanessa L. Peachee, M.S., served as the Assistant Principal Investigator. The study was conducted to provide evaluation of immunological parameters for Huntingdon Life Sciences.

The objective of the study was to determine the potential effects of Gasoline Ethanol Vapor Condensate for its ability to affect the humoral immune component of the immune system, when evaluated in the antibody-forming cell response to the T-dependent antigen, sheep erythrocytes. Female Sprague Dawley rats were administered Gasoline Ethanol Vapor Condensate for 5 days per week for 4 weeks by inhalation via whole body exposure by Huntingdon Life Sciences (HLS) Princeton Research Center (PRC) personnel. Three exposure levels of 2,000, 10,000 and 20,000 mg/m³ of the test substance were used in the study. The in-life phase of the study was conducted by HLS, East Millstone, NJ, and the immunological evaluation was conducted by ImmunoTox[®], Inc., Richmond, VA. On the day of sacrifice, spleens were placed in tubes containing media, placed on ice, and shipped to ImmunoTox[®], Inc. in Richmond, VA, for assay evaluation on the following day.

Executive Summary Table ES-1 shows a summary of the selected toxicology and immunology parameters evaluated. Exposure resulted in no statistically significant changes in body weight for any exposure level. Furthermore, there were no statistically significant effects observed in either thymus or spleen weight following exposure to Gasoline Ethanol Vapor Condensate, when evaluated as either absolute or relative weight (% body weight), as compared to the air control.

Exposure to Gasoline Ethanol Vapor Condensate did result in a statistically significant doserelated decrease in the IgM antibody-forming cell (AFC) response to the T-dependent antigen, sheep erythrocytes, when evaluated as either specific activity (AFC/10⁶ spleen cells) or as total spleen activity (AFC/spleen). The decrease reached the level of statistical significance at the high (20,000 mg/m³) exposure level.

In conclusion, the results of this immunotoxicological evaluation demonstrate that, under the experimental conditions used, exposure to the Gasoline Ethanol Vapor Condensate test substance adversely affected the functional ability of the humoral immune component of the immune system.

Table ES-1

SUMMARY TABLE FOR TOXICOLOGY AND IMMUNOLOGY STUDIES

Parameter	Parameter Result		Exposure Level (mg/m³)		
Terminal Body Weight		· · · · · · · · · · · · · · · · · · ·			
Day 29	No Effect				
Organ Weights (Absolute	and Relative)				
Spleen	No Effect				
Thymus	No Effect				
Spleen IgM Antibody-For	ming Cell Respo	nse to Sheep Erythrocy	/tes		
IgM AFC/10 ⁶ Spleen Cells	Decrease	85%	20,000		
IgM AFC/Spleen (x10 ³)	Decrease	86%	20,000		

V. INTRODUCTION

The purpose of this study was to provide evaluation of immunological parameters for Huntingdon Life Sciences (HLS) Study No. 00-6127. In this study, the test substance, Gasoline Vapor Condensate, was evaluated for its ability to affect the humoral immune component of the immune system, when evaluated in the antibody-forming cell response to the T-dependent antigen sheep erythrocytes. The study was conducted in female animals because female rats have a more robust immune response than do the male animal of the species. Accordingly, female rats have a greater sensitivity for detecting an adverse effect of a compound should one occur. Routinely, immunotoxicology evaluations conducted by the National Toxicology Program (NTP) evaluate compounds only in female animals. Four days prior to sacrifice, ImmunoTox®, Inc. personnel sensitized the rats by intravenous administration of sheep erythrocytes at the HLS facility. On the day of sacrifice, HLS Princeton Research Center (PRC) personnel aseptically removed the spleen from each animal. The spleens were weighed, placed in tubes containing media, and sent to ImmunoTox[®], Inc. in Richmond, VA, on ice for evaluation the following day. Spleens were received on 20 June 2001 and the immunological evaluation was conducted on the same day. The IgM antibody-forming cell (AFC) response to the T-dependent antigen sheep erythrocytes, also referred to as the plaque assay, was the immunological assay conducted to evaluate the effect of Gasoline Ethanol Vapor Condensate on the immune response. This assay has been shown to be the most predictive functional assay for determining the immunotoxicological potential of a compound (Luster et al.¹).

Kimber L. White, Jr., Ph.D., was the Principal Investigator for the immunological evaluation conducted by ImmunoTox[®], Inc., and Gary M. Hoffman, B.A., D.A.B.T., was the HLS Study Director. Vanessa L. Peachee, M.S., served as the Assistant Principal Investigator for ImmunoTox[®], Inc. and was responsible for carrying out the IgM antibody-forming cell assay.

In evaluating the effects of Gasoline Ethanol Vapor Condensate on the immune system, the immunologic and toxicologic parameters evaluated were spleen and thymus weights, and the spleen IgM antibody response to the T-dependent antigen (sheep erythrocytes, sRBC).

To the best of our knowledge, no significant protocol or standard operating procedure deviations occurred during the study, which affected the quality of the data and the ability to interpret the data with respect to the immunotoxicology of Gasoline Ethanol Vapor Condensate.

VI. METHODS OF PROCEDURE

EXPERIMENTAL DESIGN

The immunotoxicological satellite study consisted of a vehicle group, three exposure levels of Gasoline Ethanol Vapor Condensate, and a positive control group. There were 10 female Sprague Dawley rats in each of the groups. Animals were exposed by Huntingdon Life Sciences Princeton Research Center (PRC) personnel to either vehicle (air only) or Gasoline Ethanol Vapor Condensate at exposure levels of 2,000, 10,000 or 20,000 mg/m³ via inhalation for 4 weeks (5 days per week). Cyclophosphamide (CPS) was given as the positive control. Cyclophosphamide (CAS #6055-19-2, lot number 108H0568, received 28 February 2001, expiration 30 June 2001, white powder, storage 2-8°C, purity 99.2%), was obtained from the Sigma Chemical Company (responsible for its characterization), and was dissolved and diluted in phosphate buffered saline at Huntingdon Life Sciences to stock concentrations of 5.0 mg/mL for use as the positive control for this study. The positive control animals received 50 mg/kg @ 10 mL/kg of CPS, a known immunosuppressive agent, administered intraperitoneally (i.p.) on the last 4 days of exposure. These animals were not chamber exposed. On the day of sacrifice, one day after the last exposure, PRC personnel aseptically removed the spleen from each animal, weighed it, placed it in a collecting tube containing Earle's Balanced Salt Solution (EBSS) with HEPES and Gentamicin solution (prepared at PRC), and shipped the spleens on ice in individual shipping containers at 2-8°C by carrier to ImmunoTox®, Inc. for overnight delivery. Upon receipt, spleens were further processed for determination of IgM antibody response.

VARIABLES ASSESSED

Terminal Body and Organ Weights. The terminal body weights were obtained by Huntingdon Life Sciences PRC personnel. Huntingdon Life Sciences PRC personnel collected blood (serum) samples (orbital collection anesthetized via carbon dioxide/oxygen inhalation) and then sacrificed (carbon dioxide inhalation) the animals on the day after the final exposure. The serum samples were frozen (\leq -70°C). The thymuses were removed, weighed and preserved (formalin) for possible histopathology. Spleens were removed, weighed, and shipped at the time of sacrifice by PRC personnel to ImmunoTox[®], Inc. for immunotoxicological evaluation. <u>Splenocyte Preparation</u>. Upon arrival at the ImmunoTox[®], Inc. testing facility, spleens were accessioned in accordance with the SOP for receipt of biological samples. Single-cell suspensions were prepared from each spleen using a Stomacher[®] 80 Lab Blender in accordance with the SOP for rat spleens. Cell suspensions were then centrifuged and resuspended in Earle's Balanced Salt Solution with HEPES. Viability of splenocytes was determined using propidium iodide (PI) and the Coulter EPICS XL-MCL Flow Cytometer.

Spleen IgM Antibody Response to the T-dependent Antigen, sRBC. Day 4 Response. As background, sheep erythrocytes (sRBC) are a T-dependent antigen and, thus, T cells, B cells, and macrophages are required to function properly in order to obtain an antibody-forming cell (AFC) response. If the test article affects any of these cell types to a significant degree, an altered response will be observed. As a result, the T-dependent IgM response to sRBC is one of the most sensitive immunotoxicological assays currently in use. A significant modulation in the IgM AFC response, when appropriately compared to vehicle controls, indicates that the test agent is capable of modifying the humoral immune response in the whole animal and, thus, has the potential for immunotoxicity. This assay is one of the Tier I assays used by the NTP².

The primary IgM response to sheep erythrocytes was measured using a modified hemolytic plaque assay of Jerne³. Rats were exposed to the test article for 5 days per week for 4 weeks. Rats were sensitized by ImmunoTox[®], Inc. personnel with 2x10⁸ sRBC i.v. four days prior to sacrifice and, on the day after the last exposure, animals were sacrificed by PRC personnel. Spleen cell suspensions were prepared as described above. The cells were centrifuged and resuspended in a 6-ml volume, and 1:50 and 1:150 dilutions were prepared. An 0.1-ml aliquot of spleen cells from each suspension was added to separate test tubes, each containing 25 μ l guinea pig complement, 25 μ l sRBC, and 0.5 ml of warm agar (0.5%). After thoroughly mixing, each test tube mixture was plated onto a separate petri dish, covered with a microscope cover slip, and incubated at approximately 36-38°C for 3 hours. One dilution per animal was evaluated. Spleen cell number, following lysis of RBC, was performed on the 6-ml samples using a Model Z1 Coulter Counter. The spleen weight, cells/spleen, AFC/106 spleen cells, and AFC/spleen were determined. The plaques, which developed, were counted using a Bellco plaque viewer. For each spleen, 2 dilutions (1:50 and 1:150) were prepared. At the time of counting, each plate was examined. Routinely, the plate that had between 100-300 plaques was counted. When the number of plaques is in excess of 350 plaques per plate, it becomes difficult to obtain an accurate count using the Bellco viewer A plaque, occurring from the lysis of sRBC, is elicited as a result of the interaction of complement and antibodies (produced in response to the i.v.

sensitization) directed against sRBC. Each plaque is generated from a single IgM antibodyproducing B cell, permitting the number of AFC present in the whole spleen to be calculated. The data are expressed as specific activity (AFC/ 10^6 spleen cells) and total spleen activity (AFC/spleen).

Data

Data Handling and Statistical Analysis. The data obtained in this study were analyzed in accordance with standard operating procedure (SOP/CSA/006). Data were first tested for homogeneity of variances using the Bartlett's Chi Square Test⁴. Homogeneous data were evaluated by a parametric one-way analysis of variance⁵. When significant differences occur, exposed groups were compared to the vehicle control group using the Dunnett's t Test⁶. Nonhomogeneous data were evaluated using a non-parametric analysis of variance⁵. When significant differences occur, exposed groups were compared to vehicle control group using the Gehan-Wilcoxon Test⁷ when appropriate. The Jonckheere's Test⁸ was used to test for exposure level-related trends across the vehicle and exposed groups. The positive control was compared to the vehicle control group using the Student t Test⁹. The criteria for accepting the results of the positive control in the assay was a statistically significant ($p \le 0.05$) decrease in the response as compared to the vehicle control group.

P values of 0.05 or less, as compared to the vehicle control group, were considered statistically significant and are indicated in the tables and in the figures with a single asterisk (*). A double asterisk (**) was used to indicate a p value of 0.01 or less. In the text, the word significant indicates that the response was statistically significant at $p \le 0.05$. In the tables and charts, the abbreviation NS is used to indicate "Not Significant" for p values greater than 0.05.

<u>Data Retention</u>. All data and records were returned to the Contracting Sponsor following acceptance of the final report. Records maintained for this protocol include: study sheet, chemical preparation form, and authorized signatures and initials forms. Upon completion of this study, the report and raw data for this study will be maintained in the archives of Huntingdon Life Sciences.

VII. RESULTS

TERMINAL BODY AND ORGAN WEIGHTS.

The terminal body weight data from the study are shown in Table 1 for the control and Test Substance-exposed groups. No statistically significant differences were observed in terminal body weights of the Gasoline Ethanol Vapor Condensate exposed animals at any exposure level as compared to the vehicle (air only) controls. Treatment with the positive control, Cyclophosphamide (CPS), produced a significant decrease (8%) in terminal body weight as compared to the vehicle control.

The organ weights of the control and Test Substance-exposed rats are shown in Table 1. No effect was observed, following exposure to Gasoline Ethanol Vapor Condensate, on spleen or thymus weights when evaluated either as absolute or relative weight. Treatment with the positive control, cyclophosphamide, had a significant decrease of 57% on absolute spleen weight and a significant decrease of 80% on absolute thymus weight, compared to the vehicle control. In addition, the positive control, cyclophosphamide, had a significant decrease of 53% on relative spleen weight and a 79% decrease on relative thymus weight, compared to the vehicle control. Shown graphically in Figures 1 and 2 is the lack of effect on spleen and thymus weights following exposure to Gasoline Ethanol Vapor Condensate.

Figure 1

Absolute (mg) and Relative (%) Spleen Weight in Female Sprague Dawley Rats Exposed to Gasoline Ethanol Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks

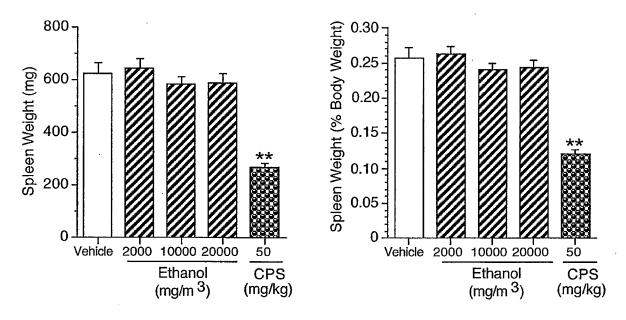
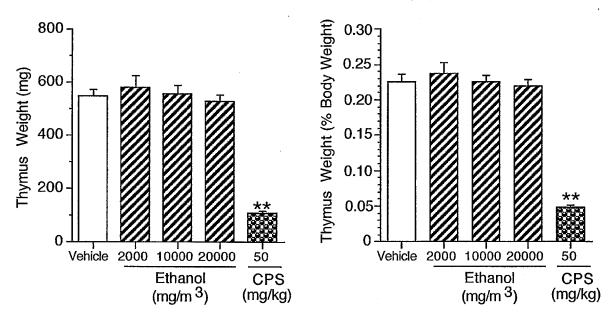
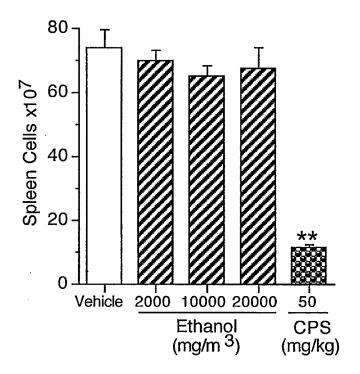



Figure 2

Absolute (mg) and Relative (%) Thymus Weight in Female Sprague Dawley Rats Exposed to Gasoline Ethanol Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks

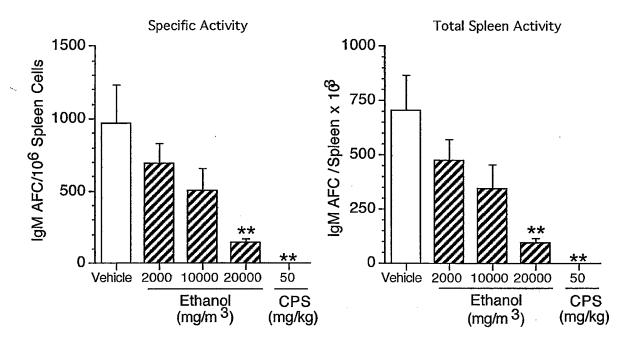
SPLEEN IGM ANTIBODY RESPONSE TO THE T-DEPENDENT ANTIGEN, SRBC. DAY 4 RESPONSE.

The spleen IgM antibody-forming cell response, i.e. plaque assay, was evaluated on spleens removed 1 day after the last exposure, which was Day 4 after antigen sensitization. Day 4 after antigen sensitization is the peak day for the sRBC IgM AFC response in rats. Viabilities were conducted on all cell suspensions using propidium iodide (PI) and the Coulter EPICS XL-MCL Flow Cytometer. The viabilities from all samples were greater than 84%.


In the plaque-forming cell (PFC) assays conducted by our laboratory and at the National Toxicology Program (NTP) Immunotoxicology Laboratory of the National Institute of Environmental Health Sciences, the PFC assay results are not adjusted for spleen cell viability. The reasons for this are as follows. In in vitro studies, which utilize a single population of cells, e.g. YAC-1 cells, correcting for viability is biologically meaningful. These cells, being of identical type, respond to stimuli in a similar manner and will die off at a similar rate. When spleens are utilized as the source of cells, this represents a heterogeneous mixture of cells, including neutrophils, lymphocytes, and macrophages. Each of these cell types will respond differently to stimuli under in vitro conditions, i.e., neutrophils will die off at a faster rate than lymphocytes. Accordingly, conducting viability determinations on total spleen cells is of little biological value when one is evaluating antigen specific antibody production by plasma cells. More specifically, once the structural integrity of the spleen is compromised, as occurs in preparing a single cell suspension, the cells now in an in vitro environment begin to die with the polymorphonuclear cells dying off at a much faster rate than will either lymphocytes or macrophages. The procedure utilized in our laboratory, and by the NTP Immunotoxicology Laboratory, minimizes the time it takes from preparing the single cell suspension of spleen cells to having them incubating in the assay petri dishes. By minimizing this preparation time, we also minimize the loss of viability, which occurs the longer the cells sit in the *in vitro* cell culture conditions. The decrease in viability, which does occur during this time, is predominately due to the dying off of the more fragile polymorphonuclear cells and not the lymphocytes, particularly those antibodyforming cells (plasma cells) making antibody to sheep erythrocytes. This is due in part to the fact that cells undergoing high metabolic activities, such as rapidly proliferating cells or cells synthesizing antibody, are less susceptible to compounds which produce cell death than are quiescent cells. It is for these reasons that there is no correlation between viability of individual spleen cell preparations and their ability to produce antibodies to sheep erythrocytes. Correcting for viability for a homogenous population in *in vitro* cultures is scientifically sound; however, as indicated above, using this procedure for mixed cell populations such as those present in the spleen, will result in artificially inflated PFC values.

The results of the AFC response are shown in Table 2 and in Figures 3 and 4. As indicated above, exposure to Gasoline Ethanol Vapor Condensate did not result in spleen weights that were significantly different from the vehicle control group. Furthermore, as shown graphically in Figure 3, there were no significant differences in spleen cell number following exposure to Gasoline Ethanol Vapor Condensate as compared to the vehicle control group. As expected, the positive control, cyclophosphamide (CPS), produced an 84% decrease in spleen cell number when compared to the vehicle control group.

Shown in Table 2 and Figure 4 are the functional results from the IgM antibody-forming cell (AFC) assay. Shown in the left panel are the results when the data are expressed as specific activity and the results of the total spleen activity are shown in the right panel. As can be seen, a dose-related decrease in the IgM-antibody-forming cell response to the T-dependent antigen, sRBC, was observed when the data were evaluated as either specific activity (AFC/10⁶ spleen) or as total spleen activity (AFC/spleen). For both parameters, exposure to Gasoline Ethanol Vapor Condensate produced a reduced response at all exposure levels; however, only the high exposure level, 20,000 mg/m³, reached the level of statistical significance. When evaluated as specific activity the response of the high dose group was suppressed 85% and 86% when the high dose group was evaluated as total spleen activity.


Figure 3

Spleen Cell Number in Female Sprague Dawley Rats Exposed to Gasoline Ethanol Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks

Figure 4

IgM Antibody-Forming Cell Response to Sheep Erythrocytes in Female Sprague Dawley Rats Exposed to Gasoline Ethanol Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks

The suppression observed following Gasoline Ethanol Vapor Condensate exposure is not unexpected, for ethanol has been shown by numerous researchers to suppress the humoral immune response¹⁰. As anticipated, the positive control, CPS, produced a significant decrease in specific activity (100%) and total spleen cell activity (100%) when compared to the vehicle control animals.

VIII. CONCLUSION

Exposure of female Sprague Dawley rats to Gasoline Ethanol Vapor Condensate for a period of 5 days per week for 4 weeks resulted in a dose-related decrease in the humoral immune response to the T-dependent antigen, sheep erythrocytes. The decrease was not unexpected based on the known immunotoxicity of ethanol. Although the functional ability of the animals was reduced, there was no statistically significant effect on body weight, spleen weight, thymus weight, or spleen cell number. Based on the immunological parameters evaluated, under the experimental conditions of the study, exposure to Gasoline Ethanol Vapor Condensate adversely affected the humoral immune response of female Sprague Dawley rats.

IX. REFERENCES

- 1. Luster MI, Portier C, Pait DG, White KL, Jr., Gennings C, Munson AE and Rosenthal GJ (1992) Risk assessment in immunotoxicology. I. Sensitivity and predictability of immune tests. *Fund. Appl. Toxicol.* 18:200-210.
- 2. Luster MI, Munson AE, Thomas P, Holsapple MP, Fenters J, White KL, Jr., Lauer LD, and Dean JD (1988). Development of a testing battery to assess chemical-induced immunotoxicity. *Fund. Appl. Toxicol.* 10:2-19.
- 3. Jerne NK, Henry C, Nordin AA, Fun H, Koros MC, and Lefkovits I (1974). Plaque-forming cells: Methodology and theory. *Trnspl. Rev.* 18:130-191.
- 4. Bartlett MS (1937). Sub-sampling for attributes. J. Roy. Stat. Soc. Suppl. 4:131-135.
- 5. Kruskal WH and Wallis WA (1952). Use of ranks in one-criterion variance analysis. *J. Amer. Stat. Assoc.* 47:583-621.
- 6. Dunnett CW (1955). A multiple comparison procedure for comparing several treatments with a control. *J. Amer. Stat. Assoc.* 50:1096-1121.
- 7. Gross AJ and Clark VA (1975). Gehan-Wilcoxon Test. In *Survival Distributions: Reliability Applications in the Biomedical Sciences*. AJ Gross and VA Clark, eds. John Wiley and Sons, New York, p. 225-256.
- 8. Hollander M and Wolfe DA (1973). Jonckheere's Test: Non-parametric Statistical Methods, eds. M. Hollander and D.A. Wolfe, John Wiley and Sons, New York, p. 120-123.
- 9. Sokal RR and Rohlf FJ (1981). *Biometry*. Freeman, San Francisco, p. 222-229.
- Loose LD, Stege T, and Diluzio NR (1975). The influence of acute and chronic ethanol or bourbon administration on phagocytic and immune responses in rats. *Exp. Mol. Pathol.* 23:159-172.

Table 1

Body Weight (g) and Organ Weights (mg) in Female Sprague Dawley Rats Exposed to Gasoline Ethanol Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks

00 01	0	0-	6	1	2	7
-------	---	----	---	---	---	---

Parameter	Vehicle (10)	<u> </u>	line Ethanol Vapor 10000 (10)	r (mg/m ³) 20000 (10)	Cyclophosphamide 50 mg/kg (10)	H/NH Trend Analysis
Body Wgt (g)	242.1 ± 4.4	243.8 ± 6.7	243.7 ± 4.9	240.1 ± 7.2	223.2 ± 7.6*	h ns
Spleen (mg)	625 ± 39	645 ± 38	586 ± 28	591 ± 34	271 ± 14**	H NS
% Body Wgt	0.257 ± 0.015	0.263 ± 0.010	0.240 ± 0.009	0.244 ± 0.010	0.121 ± 0.005**	H p≤0.05
Thymus (mg)	549 ± 24	581 ± 44	557 ± 31	528 ± 24	110 ± 9**	H NS
% Body Wgt	0.226 ± 0.010	0.238 ± 0.015	0.226 ± 0.009	0.219 ± 0.009	0.048 ± 0.003**	H NS

Female Sprague Dawley rats were administered vehicle control (air only) or gasoline ethanol vapor condensate by inhalation via whole-body exposure for 5 days per week for 4 weeks. The positive control, cyclophosphamide, was administered i.p. on the last 4 days of exposure. On the day of sacrifice, spleens were placed in tubes containing media and sent to Richmond, VA, on ice for next day cell preparation. The rats were necropsied and indicated organs weighed. Values represent the mean \pm SE derived from the number of animals indicated in parentheses. H = homogeneous data and NH = non-homogeneous data using the Bartlett's Test for homogeneity. Homogeneous data were evaluated using a parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control group using the Dunnett's t Test. Non-homogeneous data were evaluated using a non-parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control was compared to the vehicle control using the Student's t Test. Values significantly different from vehicle control at $p \le 0.05$ are indicated by an asterisk, while those significant at $p \le 0.01$ are noted by a double asterisk. The Jonckheere's Test was used to test for dose-related trends among the vehicle and exposed groups.

Key:

 $mg = milligrams; m^3 = cubic meter of air; kg = kilograms; Wgt = weight; NS = not significant for p values greater than 0.05.$

Table 2

Spleen Antibody-Forming Cell Response to T-dependent Antigen Sheep Erythrocytes in Female Sprague Dawley Rats Exposed to Gasoline Ethanol Vapor Condensate via Inhalation for 5 Days per Week for 4 Weeks - Day 4 Response

Exposure	Body Wgt	Spleen Wgt	Spleen Cells	IgM AFC/	IgM AFC/Spleen
	(g)	(mg)	(x10 ⁷)	10 ⁶ Spleen Cells	(x 10 ³)
Vehicle	242.1 ± 4.4	625 ± 39	74.34 ± 5.29	974 ± 259	705 ± 161
	(10)	(10)	(10)	(10)	(10)
Gasoline Ethanol					$\mathbf{v} = -\mathbf{v}$
2000 mg/m ³	243.8 ± 6.7	645 ± 38	70.36 ± 2.86	692 ± 137	477 ± 93
	(10)	(10)	(10)	(10)	(10)
10000 mg/m ³	243.7 ± 4.9	586 ± 28	65.44 ± 3.32	505 ± 148	347 ± 111
	(10)	(10)	(10)	(10)	(10)
20000 mg/m^3	240.1 ± 7.2	591 ± 34	67.97 ± 6.29	143 ± 29**	98 ± 18**
	(10)	(10)	(10)	(10)	(10)
Cyclophosphamide		、		\ /	
50 mg/kg	223.2 ± 7.6*	271 ± 14**	11.60 ± 0.86**	0 ± 0**	0 ± 0**
	(10)	(10)	(10)	(10)	(10)
H/NH	H	H	H	NH	НИ
Trend Analysis	NS	NS	NS	p ≤ 0.01	≥ ≤ 0.01

0	0-	61	27	
v	υ-	υı	<u> </u>	

Female Sprague Dawley rats were administered vehicle control (air only) or gasoline ethanol vapor condensate by inhalation via wholebody exposure for 5 days per week for 4 weeks. The positive control, cyclophosphamide, was administered i.p. the last 4 days of exposure. Four days prior to sacrifice, the rats were immunized (iv) with $2x10^8$ sRBC. On the day of sacrifice, spleens were placed in tubes containing media and sent to Richmond, VA, on ice for next day cell preparation. Spleens were prepared into single cell suspensions and the number of IgM sRBC antibody-forming cells was determined. Values represent the mean \pm SE derived from the number of animals indicated in parentheses. H = homogeneous data and NH = non-homogeneous data using the Bartlett's Test for homogeneity. Homogeneous data were evaluated using a parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control group using the Dunnett's t Test. Non-homogeneous data were evaluated using a non-parametric analysis of variance. When significant differences occurred, exposed groups were compared to the vehicle control was compared to the vehicle control using the Student's t Test. Values significantly different from vehicle control at $p \le 0.05$ are indicated by an asterisk, while those significant at $p \le 0.01$ are noted by a double asterisk. The Jonckheere's Test was used to test for dose-related trends among the vehicle and exposed groups.

Key:

g = grams; mg = milligrams; m³ = cubic meter of air; kg = kilograms; Wgt = weight; NS = not significant for p values greater than 0.05

Page 1256 ITI Study No. ITI 701 Security: Industrial Confidential .

APPENDIX A

INDIVIDUAL ANIMAL DATA

Page 24 of 29

	Individual Animal Data – Organ Weights Gasoline Ethanol Vapor Condensate HLS Study No. 00-6127									
Animal No.	Group	Dose	Sex	Body Weight (g)	Spleen (mg)	Thymus (mg)	Spleen / % Body Weight	Thymus / % Body Weight		
1531	GI	AIR ONLY	F	259.0	529	509	0.200	0.200		
1532	GI	AIR ONLY	F	243.6	516	544	0.210	0.220		
1533	GI	AIR ONLY	F	228.8	608	663	0.270	0.290		
1534	GI	AIR ONLY	F	264.0	779	658	0.300	0.250		
1535	GI	AIR ONLY	F	247.2	663	553	0.270	0.220		
1536	GI	AIR ONLY	F	220.6	489	540	0.220	0.240		
1537	GI	AIR ONLY	F	242.8	705	568	0.290	0.230		
1538	GI	AIR ONLY	F	237.7	743	401	0.310	0.170		
1539	GI	AIR ONLY	F	227.8	444	501	0.190	0.220		
1540	GI	AIR ONLY	F	249.2	769	548	0.310	0.220		
2521	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	246.7	653	642	0.260	0.260		
2522	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	217.4	536	560	0.250	0.260		
2523	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	234.3	512	494	0.220	0.210		
2524	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	275.6	886	746	0.320	0.270		
2525	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	249.1	746	473	0.300	0.190		
2526	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	265.2	665	468	0.250	0.180		
2527	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	230.3	602	542	0.260	0.240		
2528	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	207.8	487	425	0.230	0.200		
2529	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	255.6	656	591	0.260	0.230		
2530	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	256.3	708	873	0.280	0.340		
3521	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	228.3	422	449	0.180	0.200		
3522	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	225.9	471	508	0.210	0.220		
3523	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	244.8	581	499	0.240	0.200		
3524	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	248.0	731	624	0.290	0.250		
3525	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	270.6	636	791	0.240	0.290		
3526	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	228.0	603	483	0.260	0.210		
3527	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	253.3	576	507	0.230	0.200		
3528	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	254.3	625	565	0.250	0.220		
3529	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	227.2	572	547	0.250	0.240		
3530	GIП	10000 MG/M ³ GASOLINE ETOH VAPOR	F	256.4	644	601	0.250	0.230		
4531	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	239.9	691	536	0.290	0.220		
4532	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	235.7	657	561	0.280	0.240		
4533	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	279.0	704	622	0.250	0.220		
4534	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	218.3	433	486	0.200	0.220		
4535	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	265.0	698	565	0.260	0.210		
4536	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	214.6	438	339	0.200	0.160		
4537	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	224.9	606	557	0.270	0.250		
4538	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	231.7	536	586	0.230	0.250		
4539	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	268.7	653	522	0.240	0.190		
4540	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	222.9	492	503	0.220	0.230		

Individual Animal Data – Organ Weights (CONT'D.) Gasoline Ethanol Vapor Condensate HLS Study No. 00-6127									
Animal No.	Group	Dose	Sex	Body Weight (g)	Spleen (mg)	Thymus (mg)	Spleen / % Body Weight	Thymus / % Body Weight	
5531	GV	50 MG/KG CY CLOPHOSPHAMIDE	F	215.0	290	104	0.130	0.050	
5532	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	206.5	264	110	0.130	0.050	
5533	Gγ	50 MG/KG CYCLOPHOSPHAMIDE	F	268.7	319	160	0.120	0.060	
5534	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	260.4	294	150	0.110	0.060	
5535	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	226.8	195	84	0.090	0.040	
5536	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	226.4	324	126	0.140	0.060	
5537	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	218.5	279	95	0.130	0.040	
5538	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	199.0	197	88	0.100	0.040	
5539	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	197.4	278	64	0.140	0.030	
5540	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	213.1	266	114	0.120	0.050	

KEY:

G=GRAMS, MG=MILLIGRAMS, M³=CUBIC METER OF AIR, KG=KILOGRAMS, WT=WEIGHT

		Individual A Gasoline Ethar HLS Stu	iol Vaj		-			
Animal No.	Group	Dose	Sex	lgM AFC/ 10 ⁶ Spleen Cells	IgM AEC/ Spleen x 10 ³	Cells/ Spleen 'x10 ⁷	Spleen (mg)	Body Weight (g)
1531	GI	AIR ONLY	F	566	339	59.88	529	259.0
1532	GI	AIR ONLY	F	226	141	62.52	516	243.6
1533	GI	AIR ONLY	F	411	342	83.22	608	228.8
1534	GI	AIR ONLY	F	1428	1323	92.64	779	264.0
1535	GI	AIR ONLY	F	1010	687	68.04	663	247.2
1536	GI	AIR ONLY	F	2962	1674	56.52	489	220.6
1537	GI	AIR ONLY	F	573	546	95.28	705	242.8
1538	GI	AIR ONLY	F	1473	1116	75.78	743	237.7
1539	GI	AIR ONLY	F	403	213	52.86	444	227.8
1540	GI	AIR ONLY	F	692	669	96.66	769	249.2
2521	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	378	294	77.70	653	246.7
2522	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	270	189	70.08	536	217.4
2523	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	505	315	62.40	512	234.3
2524	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	890	750	84.30	886	275.6
2525	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	872	645	73.98	746	249.1
2526	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	1358	879	64.74	665	265.2
2527	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	666	375	56.28	602	230.3
2528	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	1377	903	65.58	487	207.8
2529	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	511	339	66.36	656	255.6
2530	GII	2000 MG/M ³ GASOLINE ETOH VAPOR	F	99	81	82.20	708	256.3
3521	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	217	108	49.68	422	228.3
3522	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	367	168	45.72	471	225.9
3523	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	60	39	65.22	581	244.8
3524	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	212	141	66.60	731	248.0
3525	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	734	570	77.64	636	270.6
3526	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	274	192	70.02	603	228.0
3527	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	181	120	66.42	576	253.3
3528	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	466	354	75.90	625	254.3
3529	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	937	594	63.42	572	227.2
3530	GIII	10000 MG/M ³ GASOLINE ETOH VAPOR	F	1598	1179	73.80	644	256.4
4531	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	49	42	85.62	691	239.9
4532	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	158	135	85.20	657	235.7
4533	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	133	123	92.16	704	279.0
4534	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	13	6	45.12	433	218.3
4535	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	107	102	95.40	698	265.0
4536	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	43	18	42.18	438	214.6
4537	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	249	147	58.98	606	224.9
4538	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	221	129	58.38	536	231.7
4539	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	279	180	64.44	653	268.7
4540	GIV	20000 MG/M ³ GASOLINE ETOH VAPOR	F	178	93	52.26	492	222.9

		Individual Animal Gasoline Ethan HLS Stu	ol Vaj	por Conden				
Animal No.	Group	Dose.	Sex	IgM AFC/ 10 ⁶ Spleen Cells	IgM AFC/- Spleen x 10 ³	Cells/ Spleen x10 ⁷	Spleen (mg)	Body Weight (g)
5531	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	14.16	290	215.0
5532	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	11.76	264	206.5
5533	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	15.66	319	268.7
5534	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	11.52	294	260.4
5535	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	7.26	195	226.8
5536	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	14.22	324	226.4
5537	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	11.64	279	218.5
5538	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	7.62	197	199.0
5539	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	11.70	278	197.4
5540	GV	50 MG/KG CYCLOPHOSPHAMIDE	F	0	0	10.50	266	213.1

KEY:

G=GRAMS, MG=MILLIGRAMS, M3=CUBIC METER OF AIR, KG=KILOGRAMS

APPENDIX B

CONTRACTING SPONSOR'S EXPOSURE AND ANIMAL DATA

Huntingdon Life Sciences	00-6127	Page 1263
C	211-EtOH-S	Final Report

Animal Exposure and Animal Data	
Preface	Appendix B

INTRODUCTION: The following is data generated at Huntingdon Life Sciences, East Millstone, NJ. The separately issued main study report should be referenced for details of the procedures used for test atmosphere generation/characterization and animal evaluations.

STUDY DATES:	Date of Animal Receipt:	8 May 2001
	Experimental Initiation Date:	22 May 2001 (in-life)
	Experimental Completion Date:	19 June 2001 (in-life)

EXPOSURES AND IN-LIFE SUMMARY: The actual measured results during the exposures were comparable to the targeted exposure levels. There were no exposure-related effects seen in the test animals with regards to body weights and feed consumption.

TABLE OF CONTENTS

TABLES

A.	Chamber Monitoring Results	1264
B.	Summary of Clinical Observations (pretest only)	1272
	Mean Body Weights (grams)	
D.	Mean Body Weight Change (grams)	1274
E.	Mean Feed Consumption Values (grams/kg/day)	1275
	Individual Clinical Observations (pretest only)	
	Individual Body Weights (grams)	
H.	Individual Body Weight Change (grams)	
T	Individual Feed Consumption Values (grams/kg/day)	
	Animal Termination History	

00-6127

			····		Cha	umber Moni	toring R	esults					
					Cun	ulative H	xposure	Record					
						IA - 0 mg)				
												Chamber En	wironment
									P	article :	Size	Mean	
Day	Date	Exposure	Nominal	Ana	lytical C	namber Con	centrati	.on	De	eterminat	ions	Temperature	Humidity
		Number		Mean		Indivi	dual.		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)		(mg/	m ³)		(µm)		(mg/m ³)	(°C)	(응)
35	22-May-01	1	0	0	0	0	0	0	(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(<u>9</u> //	24	50
36	23-May-01	2	0	0	0	0	0	0				24	50
37	24-May-01	3	0	0	0	0	0	0	0.8431	1.531	3.16E-03	24	49
38	25-May-01	4	0	0	0	0	0	0				24	50
41	28-May-01	5	0	0	0	0	0	0				24	52
42	29-May-01	6	0	0	0	0	0	0				25	50
43	30-May-01	7	0	0	0	0	0	0				25	47
44	31-May-01	8	0	0	0	0	0	0	8.759	2.355	2.40E-03	25	47
45	1-Jun-01	9	0	0	0	0	0	0				25	46
48	4-Jun-01	10	0	. 0	0	0	0	0				25	45
49	5-Jun-01	11	0	0	0	0	0	0				24	48
50	6-Jun-01	12	0	0	0	0	0	0				23	51
51	7-Jun-01	13	0	0	0	0	0	0	2.067	2.172	2.13E-03	24	44
52	8-Jun-01	14	0	0	0	0	0	0				24	45
55	11-Jun-01	15	0	0	0	0	0	0				24	48
56	12-Jun-01	16	0	0	0	0	0	0				26	50
57	13-Jun-01	17	0	0	0	0	0	0				25	50
58	14-Jun-01	18	0	0	0	0	O	0	0.8592	1.676	5.00E-02	25	50
59	15-Jun-01	19	0	0	0	0	0	0				25	50
62	18-Jun-01	20	0	0	0	0	0	0				25	47
		Mean	0			0			3.132	1.934	1.44E-02	24.5	48.5
		S.D.	- 0			0			3.795	0.393	2.37E-02	0.7	2.2

.

00-6127

						Chamber Mo	nitoring	Results					
[Cumulative	Exposure	Record					
					Gro	up IB - 0	mg/m ³ (Ai	r Contro	1)				
												Chamber E	nvironment
									Particle	Size	Me	an	
Day	Date	Exposure	Nominal	Ana	lytical	Chamber Co	ncentrati	.on	I	Determina	tions	Temperature	Humidity
		Number		Mean		Indiv	idual		MMAD	GSD	TMC		
	1	{											
			(mg/m ³)	(mg/m³)		(mg/	(m ³)		(µm)		(mg/m ³)	(°C)	(%)
35	22-May-01	1	0	0	0	0	0	0				25	48
36	23-May-01	2	0	0	0	0	0	0				25	47
37	24-May-01	3	0	0	0	0	0	0	0.8692	1.676	3.48E-03	25	47
38	25-May-01	4	0	0	0	0	0	0				24	47
41	28-May-01	5	0	0	· 0	0	0	0				24	49
42	29-May-01	6	0	0	0	0	0	0				24	49
43	30-May-01	7	0	0	0	0	0	0				24	44
44	31-May-01	8	0	0	0	0	0	0	1.557	1.915	7.43E-04	24	45
45	1-Jun-01	9	0	0	0	0	0	0	1			25	44
48	4-Jun-01	10	0	0	0	0	0	0				24	44
49	5-Jun-01	11	0	0	0	0	0	0				25	46
50	6-Jun-01	12	0	0	0	0	0	0				24	49
51	7-Jun-01	13	0	0	0	0	0	0	1.434	1.602	1.49E-03	24	43
52	8-Jun-01	14	0	0	0	0	0	0				25	44
55	11-Jun-01	15	0	0	0	0	0	0				25	46
56	12-Jun-01	16	0	0	0	0	0	0				25	49
57	13-Jun-01	17	0	0	0	0	0	0			:	25	48
58	14-Jun-01	18	0	0	0	0	0	0	0.8688	1.854	5.01E-02	25	49
59	15-Jun-01	19	0	0	0	0	0	0				24	50
62	18-Jun-01	20	0	0	0	0	0	0				25	46
		Mean	0			0			1.182	1.762	1.40E-02	24.5	46.7
		S.D.	0			0			0.365	0.147	2.41E-02	0.5	2.2

ς.

					c	Chamber Mor	nitoring	Results				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
					c	Cumulative	Exposure	Record					4
						Group IIA	- 2,000	mg/m³					
												Chamber E	nvironment
									Pa	article S	Size	Mean	
Day	Date	Exposure	Nominal	Ana	lytical (Chamber Co	ncentrati	on	De	terminat	ions	Temperature	Humidity
		Number		Mean		Indiv	idual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)	(mg/m ³)				(µm)		(mg/m ³)	(°C)	(%)
35	22-May-01	1	2990	1978	2070	1990	1960	1890				23	50
36	23-May-01	2	2940	2018	2180	1920	1910	2060				23	50
37	24-May-01	3	3010	1978	2050	1740	1930	2190	0.8657	1.945	5.90E-03	23	51
38	25-May-01	4	3160	1948	2020	1860	1720	2190	ан. С			23	52
41	28-May-01	5	3060	1913	1670	2070	1870	2040				23	52
42	29-May-01	6	3030	2085	2390	1910	2090	1950				24	50
43	30-May-01	7	3000	2065	2150	2200	1920	1990			1	24	45
44	31-May-01	8	2820	2318	2680	2070	2330	2190	2.020	1.763	1.49E-03	24	46
45	1-Jun-01	9	3000	2043	1870	1900	2050	2350				24	44
48	4-Jun-01	10	2900	2135	2360	1870	2240	2070				24	44
49	5-Jun-01	11	3010	2083	1900	2190	2170	2070				24	47
50	6-Jun-01	12	3030	2083	1930	2070	2260	2070				23	51
51	7-Jun-01	13	3140	2035	1870	1980	2170	2120	2.037	2.179	2.23E-03	23	44
52	8-Jun-01	14	3050	2078	2090	2000	2060	2160				24	46
55	11-Jun-01	15	3240	2180	2060	2180	2180	2300				24	48
56	12-Jun-01	16	2850	2125	1920	2320	2360	1900	[25	49
57	13-Jun-01	17	2930	1898	1710	1750	2150	1980				24	48
58	14-Jun-01	18	3200	2023	2090	1960	1960	2080	0.8687	1.992	5.26E-02	24	49
59	15-Jun-01	19	3150	2165	2020	2160	2270	2210				23	51
62	18-Jun-01	20	3200	2025	2070	1790 2059	1980	2260				24	47
	Mean 3036							1.448	1.970	1.56E-02	23.7	48.2	
	· · · · · · · · · · ·	S.D.	117			178			0.671	0.171	2.48E-02	0.6	2.7

00-6127

				· · · · · · · · · · · · · · · · · · ·	c	hamber Mor	nitoring	Results				<u> </u>		
					C	umulative	Exposure	Record						
						Group IIB	- 2,000	mg/m³						
									1		····	Chamber E	nvironment	
									Pa	article a	Size	Mean		
Day	Date	Exposure	Nominal	Ana	lytical (Chamber Co	ncentrati	on	De	terminat	ions	Temperature	Humidity	
		Number		Mean		Indiv	idual		MMAD	GSD	TMC			
			(mg/m ³)	(mg/m ³)		(mg/m ³)					(mg/m ³)	(°C)	(%)	
35	22-May-01	1	2990	1963	1720	2070	2070	1990				23	49	
36	23-May-01	2	2940	2035	2180	1920	1970	2070				23	48	
37	24-May-01	3	3010	2005	2190	1890	2140	1800	0.7828	1.492	4.50E-03	23	49	
38	25-May-01	4	3160	2025	1840	2210	1790	2260				23	49	
41	28-May-01	5	3060	1805	1680	1830	1820	1890				23	51	
42	29-May-01	б	3030	2123	2400	2020	2110	1960			1	24	49	
43	30-May-01	7	3000	2155	2190	2040	2150	2240				24	46	
44	31-May-01	8	2820	2375	2770	2250	2300	2180	1.726	1.913	1.02E-03	24	46	
45	1-Jun-01	9	3000	2043	1890	1890	2070	2320				24	44	
48	4-Jun-01	10	2900	2163	2160	1900	2350	2240				24	44	
49	5-Jun-01	11	3010	1968	1730	2080	2100	1960				24	46	
50	6-Jun-01	12	3030	2010	1710	1820	2330	2180				23	51	
51	7-Jun-01	13	3140	2103	1850	1960	2200	2400	1.979	1.925	2.29E-03	24	43	
52	8-Jun-01	14	3050	2113	2090	2060	2090	2210				24	44	
55	11-Jun-01	15	3240	2128	2200	2130	2170	2010				24	46	
56	12-Jun-01	16	2850	2200	2180	2110	2400	2110				25	49	
57	13-Jun-01	17	2930	1863	1940	1850	1940	1720				25	48	
58	14-Jun-01	18	3200	2213	2320	2090	2110	2330	2.246	2.712	9.40E-02	24	50	
59	15-Jun-01	19	3150	2210	2120	2130	2310	2280				24	51	
62	18-Jun-01	20	3200	1985	1850	1970	1990	2130				25	46	
	Mean 30				2074				1.683	2.011	2.55E-02	23.9	47.5	
		S.D.	117			198			0.637	0.509	4.57E-02	0.7	2.5	

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE BODY INHALATION TOXICITY STUDY IN RATS

00-6127

					(Chamber Mo:	nitoring	Results					
					(Cumulative	Exposure	Record					
,						Group IIIA	A - 10,00	0 mg/m³					
												Chamber En	vironment
									Р	article s	Size	Mean	
Day	Date	Exposure	Nominal	Ana	lytical (Chamber Con	ncentrati	on	De	eterminat	ions	Temperature	Humidity
		Number		Mean		Indiv:	idual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)		(mg/m ³)					(mg/m ³)	(°C)	(%)
35	22-May-01	1	12500	10170	9920	9950	10600	10200				24	50
36	23-May-01	2	12600	10160	9950	9690	10400	10600				24	49
37	24-May-01	3	12400	10230	9720	10200	10300	10700	0.7874	1.582	5.47E-03	24	50
38	25-May-01	4	12600	10210	9820	10200	10400	10400				24	49
41	28-May-01	5	12600	9310	7950	9950	9490	9850				24	51
42	29-May-01	6	11900	10380	10300	10500	10200	10500				24	49
43	30-May-01	7	12200	10780	10900	10400	10600	11200				24	46
44	31-May-01	8	10400	11120	13000	11200	10500	9790	2.164	1.913	1.58E-03	24	45
45	1-Jun-01	9	11800	9905	8490	11500	9130	10500				24	45
48	4-Jun-01	10	12000	10060	10100	10300	9620	10200				24	44
49	5-Jun-01	11	12300	10040	9790	10300	10100	9950				25	47
50	6-Jun-01	12	12100	9930	9690	9950	10200	9880				24	49
51	7-Jun-01	13	12300	10350	10600	10300	10200	10300	1.591	1.735	2.40E-03	24	43
52	8-Jun-01	14	12400	10180	10400	10000	10100	10200				24	45
55	11-Jun-01	15	12500	10450	9690	10600	10400	11100				24	47
56	12-Jun-01	16	11700	10550	11300	9790	10100	11000				25	48
57	13-Jun-01	17	12000	9808	9320	9790	9620	10500				25	48
58	14-Jun-01	18	12500	9908	10700	9720	9690	9520	0.8862	1.735	4.44E-02	24	50
59	15-Jun-01	19	12200	10180	10200	10500	10000	10000				24	50
62	62 18-Jun-01 20 12300 10070				10600 10200 9360 10100							25	45
		Mean	12170			10190			1.357	1.741	1.35E-02	24.2	47.5
		S.D.	496			640			0.646	0.135	2.07E-02	0.4	2.4

						Chamber Mc	nitoring	Results					
						Cumulative	Exposure	e Record					
						Group III	B - 10,00	0 mg/m ³					
												Chamber E	nvironment
				Particle Size				Mean					
Day	Date	Exposure	Nominal	Ana	lytical (Chamber Con	ncentrati	on	D	eterminat	tions	Temperature	Humidity
		Number		Mean		Indiv:	idual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)		(mg/	'm ³)		(µm)		(mg/m ³)	(°C)	(%)
35	22-May-01	1	12500	10480	10200	11000	10300	10400				24	49
36	23-May-01	2	12600	10400	10100	10100	10800	10600				24	49
37	24-May-01	3	12400	10900	10000	10800	11800	11000	0.7889	1.540	5.63E-03	24	50
38	25-May-01	4	12600	10090	10300	9850	10200	10000				24	49
41	28-May-01	5	12600	9680	9825	9590	9490	9820				24	50
42	29-May-01	б	11900	10110	10100	10400	9820	10100				25	49
43	30-May-01	7	12200	10020	9490	10100	10400	10100				24	46
44	31-May-01	8	10400	10600	12800	10600	10100	8900	2.518	2.423	2.13E-03	25	46
45	1-Jun-01	9	11800	9710	8050	10700	9490	10600				25	45
48	4-Jun-01	10	12000	10380	10500	10700	9620	10700				25	44
49	5-Jun-01	11	12300	10630	10600	10700	10800	10400				24	46
50	6-Jun-01	12	12100	10040	9590	9850	10600	10100	í I			24	49
51	7-Jun-01	13	12300	10220	10200	10700	10000	9980	2.076	1.926	2.14E-03	24	42
52	8-Jun-01	14	12400	10240	10200	9950	10400	10400				24	43
55	11-Jun-01	15	12500	10510	9130	10800	10600	11500				24	47
56	12-Jun-01	16	11700 ⁻	10700	11800	10100	10300	10600				26	49
57	13-Jun-01	17	12000	10250	10200	10100	10600	10100				25	49
58	14-Jun-01	18	12500	9993	10200	10100	9820	9850	0.8732	1.657	4.46E-02	25	50
59	15-Jun-01	19	12200	10080	9790	9920	10100	10500				24	51
62	18-Jun-01	20 Mean	12300	10360	9850	10100	10400	11100				25	46
		12170		10270				1.564	1.887	1.36E-02	24.5	47.5	
		S.D.	496			631			0.866	0.392	2.07E-02	0.6	2.6

Table A

00-6127

.

.

.

					с	hamber Mon	itoring H	Results			·····		
					с	umulative	Exposure	Record					
						Group IVA	- 20,000	mg/m³					
												Chamber E	nvironment
									P	article &	Size	Ме	
Day	Date	Exposure	Nominal	Ana	lytical (hamber Co	ncentrati	on	De	terminat	ions	Temperature	Humidity
		Number		Mean		Indiv	idual		MMAD	GSD	TMC		-
:			(mg/m³)	(mg/m ³)		(mg/	′m³)		(µm)		(mg/m ³)	(°C)	(%)
35	22-May-01	1	25900	20400	19300	20600	21800	19900				24	52
36	23-May-01	2	26100	21300	22700	20600	20600	21300				24	49
37	24-May-01	3	25700	20350	21400	19600	20400	20000	4.411	2.361	2.14E-02	24	51
38	25-May-01	4	26500	21030	21400	21300	20800	20600				24	50
41	28-May-01	5	25600	18430	17500	18100	19000	19100				24	53
42	29-May-01	6	26800	20630	21200	21000	20400	19900				25	51
43	30-May-01	7	26600	20000	20100	19800	20000	20100			:	25	52
44	31-May-01	8	22900	21830	25100	21000	20300	20900	1.555	1.642	1.49E-03	25	48
45	1-Jun-01	9	23900	18430	17000	18100	19000	19600				25	46
48	4-Jun-01	10	26200	20650	20100	20800	20800	20900				25	46
49	5-Jun-01	11	26700	21150	20100	21600	22300	20600				24	49
50	6-Jun-01	12	27000	20780	19200	20600	21900	21400				23	54
51	7-Jun-01	13	25600	20980	21400	20900	20500	21100	1.392	1.555	1.10E-03	24	45
52	8-Jun-01	14	25300	21300	22400	22000	20400	20400				24	45
55	11-Jun-01	15	24900	20400	21100	20100	19600	20800				24	50
56	12-Jun-01	16	23600	20980	22700	19800	21300	20100				26	51
57	13-Jun-01	17	24600	20550	20200	21100	20800	20100				25	51
58	14-Jun-01	18	25000	20150	20000	19600	20200	20800	0.8922	1.727	4.61E-02	25	54
59	15-Jun-01	19	25200	20780	20800	21600	20100	20600				25	53
62	18-Jun-01	20	25000	19380	17400	19900	20500	19700				25	48
		Mean	25460			20470			2.063	1.821	1.75E-02	24.5	49.9
		S.D.	1109			1204		<u> </u>	1.591	0.367	2.13E-02	0.7	2.8

Table A

					c	hamber Mor	itoring 1	Results					
					С	umulative	Exposure	Record					
						Group IVB	- 20,000	mg/m ³				·	
												Chamber E	nvironment
									Pa	article S	Size	Me	an
Day	Date	Exposure	Nominal	Ana	lytical (Chamber Con	ncentrati	on	De	terminat	ions	Temperature	Humidity
		Number		Mean		Indiv:	idual		MMAD	GSD	TMC		
			(mg/m ³)	(mg/m ³)		(mg/	′m³)		(µm)		(mg/m ³)	(°C)	(%)
35	22-May-01	1	25900	20830	20300	21300	21600	20100				25	56
36	23-May-01	2	26100	20500	21600	19600	20800	20000				25	54
37	24-May-01	3	25700	20230	20800	19600	20600	19900	0.7816	1.437	4.78E-03	25	54
38	25-May-01	4	26500	20400	20900	20800	20100	19800				25	54
41	28-May-01	5	25600	19430	19000	19100	19800	19800				25	54
42	29-May-01	б	26800	20380	21400	20300	19400	20400				25	55
43	30-May-01	7	26600	20680	21100	20700	20100	20800				24	47
44	31-May-01	8	22900	21650	23000	21800	20800	21000	1,786	2.141	1.16E-03	25	48
45	1-Jun-01	9	23900	19230	18700	18100	19800	20300				25	49
48	4-Jun-01	10	26200	20450	20300	20600	20500	20400				25	48
49	5-Jun-01	11	26700	20750	19700	21000	21300	21000				25	53
50	6-Jun-01	12	27000	21400	20300	21600	21900	21800				25	56
51	7-Jun-01	13	25600	20430	20400	20300	20000	21000	1.618	1.703	1.63E-03	25	48
52	8-Jun-01	14	25300	20430	19800	21200	20100	20600				25	49
55	11-Jun-01	15	24900	21580	21400	20100	22600	22200				25	53
56	12-Jun-01	16	23600	21230	23200	21300	20100	20500				26	54
57	13-Jun-01	17	24600	20380	20000	21000	20600	19900				25	54
58	14-Jun-01	18	25000	19750	19200	19300	20000	20500	0.9184	2.066	4.89E-02	25	57
59	15-Jun-01	19	25200	19950	19700	20900	19100	20100				24	56
62	18-Jun-01	20	25000	20550	21800	19900	20400	20100		·····		25	51
		Mean	25460			20510			1.276	1.837	1.41E-02	25.0	52.5
		S.D.	1109			917			0.500	0.328	2.32E-02	0.4	3.2

Huntingdon Life Sciences 00-61271 Page 1272 Immunotoxicity Sub-Group TABLE B GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS FEMALES SUMMARY OF CLINICAL OBSERVATIONS DAY OF STUDY GROUP# -8 TOTAL # OF ANIMALS EXAMINED 1 10 2 10 3 10 4 10 5 10 NORMAL WITHIN NORMAL LIMITS 1 10 10 2 10 10 3 10 10 4 10 10 5 10 10

Page 1273

TABLE C

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

	DOS	E GROUP:	I	II	III	IV	v
	EXPOSURE LEVEL	(mg/m3):	0	2,000	10,000	20,000	POSITIVE CONTROL
WEEK	- 1	MEAN	118	118	110	110	110
WEER	-1	S.D.	6.6	6.3	118 8.0	118 7.8	118
		N. 5.D.	10	10	8.0 10	10	7.2
		14	10	10	10	TO	10
WEEK	0	MEAN	159	162	163	159	162
		S.D.	6.3	9.7	10.6	8.0	9.8
		N	10	10	10	10	10
WEEK	1	MEAN	181	184	187	182	184
		S.D.	7.4	12.5	11.1	14.8	14.7
		N	10	10	10	10	10
WEEK	2	MEAN	204	211	211	206	205
		S.D.	8.8	18.5	13.0	17.7	21.0
		N	10	10	10	10	10
WEEK	3	MEAN	224	231	229	225	226
		S.D.	10.9	24.7	14.5	17.5	22.5
	· •	N	10	10	10	10	10
WEEK	4	MEAN	242	244	244	240	223
	· · .	S.D.	13.8	21.3	15.6	22.8	24.0
		N	10	10 .	10	10	10

No statistically significant differences

. . .

Page 1274

TABLE D

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

ALES				ME	AN BODY WEIGHT CH	ANGE (GRAMS)		
	EXPOS	DOS URE LEVEL	E GROUP: (mg/m3):	I O	II 2,000	III 10,000	IV 20,000	V POSITIVE CONTROL
WEEK	0 ТО	1	MEAN	22	21	24	23	22
			S.D.	5.5	6.8	3.5	9.0	7.7
			N	10	10	10	10	10
WEEK	о то	2	MEAN	45	49	48	47	43
			S.D.	6.1	11.1	6.0	10.6	13.6
			N	10	10	10	10	10
WEEK	о то	3	MEAN	65	69	66	66	64
			S.D.	7.8	21.2	8.6	10.9	14.4
			N .	10	10	10	10	10
WEEK	о то	4	MEAN	83	82	80	82	61**
			S.D.	10.4	13.8	8.8	16.9	16.7
			N	10	10	10	10	10

Statistical key: ** = p<0.01

Page 1275

TABLE E

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

			-				
	DOSE GROUP		I	II	III	IV	v
	EXPOSURE LEVEL (mg/m3):	: 	0	2,000	10,000	20,000	POSITIVE CONTROL
WEEK	0	EAN	124	129	. 127	124	132
		3.D.	7.3	6.0	6.2	8.6	9.2
		N	10	10	10	10	10
WEEK		1EAN	100	104	105	104	110**
	S	5.D.	4.1	6.4	5.5	5.1	4.8
		N	10	10	10	10	10
WEEK	2	1EAN	89	95*	95*	95**	99**
	S	5.D.	4.7	3.5	4.7	4.9	4.9
		N	10	10	10	10	9
WEEK	3 м	IEAN	85	84	89	91	92*
	٤	5.D.	5.7	6.6	4.0	5.0	5.9
•		N	10	9	10	9	9
WEEK	4 N	IEAN	79	2. 80	80	83	73*
5. C	5	5.D.		6.0	3.7	5.2	4.6
•		N	10	10	9	10	10

Statistical key: * = p<0.05 ** = p<0.01

FEMALES GROUP I

• * *

Huntingdon Life Sciences 00-61271 Immunotoxicity Sub-Group

0 mg/m3

Page 1276

TABLE F

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL CLINICAL OBSERVATIONS

ANIMAL#	OBSERVATIONS	DAY OF STUDY	- 8	
1531	WITHIN NORMAL LIMITS		P	
1532	WITHIN NORMAL LIMITS		P	
1533	WITHIN NORMAL LIMITS		P	
1534	WITHIN NORMAL LIMITS		P	
1535	WITHIN NORMAL LIMITS		Р	
1536	WITHIN NORMAL LIMITS		P	
1537	WITHIN NORMAL LIMITS		P	
1538	WITHIN NORMAL LIMITS		P	
1539	WITHIN NORMAL LIMITS		₽	
1540	WITHIN NORMAL LIMITS		P	

CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT

Huntingdon Life Sciences 00-61271 Page 1277 Immunotoxicity Sub-Group TABLE F GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS INDIVIDUAL CLINICAL OBSERVATIONS FEMALES GROUP II 2,000 mg/m3 -----DAY OF -ANIMAL# OBSERVATIONS STUDY 8 -------2521 WITHIN NORMAL LIMITS ₽ 2522 WITHIN NORMAL LIMITS Ρ 2523 WITHIN NORMAL LIMITS Ρ 2524 WITHIN NORMAL LIMITS Ρ WITHIN NORMAL LIMITS 2525 Ρ 2526 WITHIN NORMAL LIMITS Р 2527 WITHIN NORMAL LIMITS Ρ 2528 WITHIN NORMAL LIMITS P WITHIN NORMAL LIMITS 2529 ₽ All Markets 2530 WITHIN NORMAL LIMITS Ρ and the second of the ------.. CODE: 1-SLIGHT 2-MODERATE 3-MARKED P-PRESENT .

.

Huntingdon Life Sciences 00-61271 Immunotoxicity Sub-Group

Page 1278

TABLE F

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL CLINICAL OBSERVATIONS

1IMAL#	OBSERVATIONS	DAY OF STUDY	- 8	
3521	WITHIN NORMAL LIMITS		P	
3522	WITHIN NORMAL LIMITS		P	
3523	WITHIN NORMAL LIMITS		P	
3524	WITHIN NORMAL LIMITS		P	
3525	WITHIN NORMAL LIMITS		P	
3526	WITHIN NORMAL LIMITS		þ	
3527	WITHIN NORMAL LIMITS		P .	13 13
3528	WITHIN NORMAL LIMITS		p	e di Ang
3529	WITHIN NORMAL LIMITS		P	n an start start
3530	WITHIN NORMAL LIMITS		P	12.51

...

Huntingdon Life Sciences 00-61271 Immunotoxicity Sub-Group

Page 1279

TABLE F

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES	GROUP IV 20,000 mg/m3				
ANIMAL#	OBSERVATIONS	day of Study	- 8		
4531	WITHIN NORMAL LIMITS		Р		
4532	WITHIN NORMAL LIMITS		₽		
4533	WITHIN NORMAL LIMITS		Р		
4534	WITHIN NORMAL LIMITS		P		
4535	WITHIN NORMAL LIMITS		P		
4536	WITHIN NORMAL LIMITS		P		
4537	WITHIN NORMAL LIMITS		P		
4538	WITHIN NORMAL LIMITS		₽		
4539	WITHIN NORMAL LIMITS		P	•	a anti-arra di Ca
4540	WITHIN NORMAL LIMITS		Р	• • • • •	and the second
CODE: 1-	SLIGHT 2-MODERATE 3-MARKED P-PRESENT				

and a second second

.

Huntingdon Life Sciences 00-61271 Immunotoxicity Sub-Group

TABLE F

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL CLINICAL OBSERVATIONS

FEMALES	GROUP V POSITIVE CONTROL	INDIVIDOAL CI	INICAL OBSERVATIONS	 	
ANIMAL#	OBSERVATIONS	DAY OF STUDY	- 8	 	
5531	WITHIN NORMAL LIMITS		P		
5532	WITHIN NORMAL LIMITS		P		
5533	WITHIN NORMAL LIMITS		P		
5534	WITHIN NORMAL LIMITS		P		
5535	WITHIN NORMAL LIMITS		P		
5536	WITHIN NORMAL LIMITS		P		
5537	WITHIN NORMAL LIMITS		P		
5538	WITHIN NORMAL LIMITS		P		ż
5539	WITHIN NORMAL LIMITS		P	1	2
5540	WITHIN NORMAL LIMITS		Р	at e	1
CODE: 1-SI	LIGHT 2-MODERATE 3-MARKED P-PRESENT			 	•

Page 1280

Page 1281

٨

TABLE G

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

FEMALES GROU	IPI On	ng/m3				INDIVIDU	AL BODY WEIGHTS (GRAMS)
	WEEK	OF STU	JDY				
ANIMAL#	-1	0	1	2	3	4	
1531	128	162	197	218	237	259	
1532	123	167	183	203	221	244	
1533	105	150	172	194	214	229	
1534	119	168	182	217	243	264	
1535	113	156	179	210	225	247	
1536	119	150	171	193	208	221	
1537	121	160	185	204	229	243	
1538	125	163	187	205	225	238	
1539	117	158	177	197	213	228	
1540	112	156	181	199	227	249	
MEAN	118	159	181	204	224	242	
S.D.	6.6	6.3	7.4	8.8	10.9	13.8	
N	10	10	10	10	10	10	

.

Huntingdon Life Sciences 00-6127I Immunotoxicity Sub-Group

1

Page 1282

TABLE G

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL BODY WEIGHTS (GRAMS)

	WEEK	OF ST	UDY				
ANIMAL#	-1	0	1	2	3	4	
2521	108	157	186	214	278	247	
2522	115	155	172	192	206	217	
2523	119	160	177	202	216	234	
2524	124	175	200	241	241	276	
2525	115	159	185	215	229	249	
2526	127	177	191	225	246	265	
2527	119	152	176	200	214	230	
2528	111	151	160	178	192	208	
2529	125	173	198	229	247	256	·
2530	120	163	192	216	240	256	
EAN	118	162	184	211	231	244	
.D.	6.3	9.7	12.5	18.5	24.7	21.3	
N	10	10	10	10	10	10	

Page 1283

TABLE G

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

	WEEL	COF STU	UDY				
ANIMAL#	-1	0			3	4	
3521	118	158	177	198	213	228	
3522	115	158	183	201	212	226	
3523	123	170	195	221	234	245	
3524	119	164	187	211	233	248	
3525	129	179	208	240	258	271	
3526	101	141	167	194	214	228	
3527	125	167	193	212	231	253	
3528	110	165	186	212	241	254	
3529	117	157	182	205	219	227	
3530	124	173	192	216	231	256	
EAN	118	163	187	211	229	244	
.D.	8.0	10.6	11.1	13.0	14.5	15.6	
N	10	10	10	10	10	10	

Huntingdon Life Sciences 00-61271 Immunotoxicity Sub-Group

.. ...

1 -

Page 1284

TABLE G

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL BODY WEIGHTS (GRAMS)

FEMALES (GROUP IV	20	,000 mg	g/m3			
	W	VEEK	OF STU	JDY			
ANIMAL#	-	-1	0	l	2	3	4
4531	12	20	156	184	202	220	240
4532	10		149	175	195	220	240
4533	12		167	205	230	249	279
4534	11	.3	147	164	186	207	218
4535	12	25	167	197	227	242	265
4536	11	7	152	172	188	202	215
4537	10		159	172	206	229	225
4538	11		163	174	207	219	232
4539	12		170	203	230	252	269
4540	12	21	154	171	187	211	223
MEAN	11	8	159	182	206	225	240
S.D.	7.	8	8.0	14.8	17.7	17.5	22.8
N	1	.0	10	10	10	10	10

Page 1285

TABLE G

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

FEMALES	GROUP V	POS	SITIVE (CONTROL			INDIVID	JAL BODY WEIGHTS (GRAMS)
		WEER	OF STU	 DY				
ANIMAL#		-1	0	1	2	3	4	
5531		122	161	180	197	213	215	
5532		109	151	169	185	210	207	
5533		126	171	211	241	267	269	
5534		130	183	203	232	264	260	
5535		118	162	181	205	223	227	
5536		112	159	184	206	221	226	
5537		117	159	181	210	227	219	
5538		120	158	183	203	214	199	
5539		108	149	159	167	198	197	
5540		123	166	185	202	224	213	
MEAN		118	162	184	205	226	223	
s.D.		7.2	9.8	14.7	21.0	22.5	24.0	
N		10	10	10	10	10	10	

Page 1286

TABLE H

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

	UPI On	ng/m3			
		OF STU	DY		
ANIMAL#	0-1	0-2	0-3	0-4	
1531	34	56	75	97	
1532	16	36	54	76	
1533	22	43	64	79	
1534	14	49	75	96	
1535	23	54	68	91	
1536	21	43	58	71	
1537	24	44	69	83	
1538	25	42	62	75	
1539	19	39	55	70	
1540	24	43	71	93	
MEAN	22	45	65	83	
S.D.	5.5	6.1	7.8	10.4	
N	10	10	10	10	

Page 1287

TABLE H

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

FEMALES GROU	PII 2	,000 mg	/m3		INDIVIDUAL BODY WEIGHT CHANGE (GRAMS)
	WEEK	OF STU	DY		
ANIMAL#	0-1	0-2	0-3	0-4	
2521	29	57	121	90	
2522	18	38	52	63	
2523	17	42	57	75	
2524	26	66	66	101	
2525	26	56	70	90	
2526	14	48	69	88	
2527	24	48	62	78	
2528	9	27	41	57	
2529	24	56	73	82	
2530	29	53	77	93	
MEAN	21	49	69	82	
S.D.	6.8	11.1	21.2	13.8	
N	10	10	10	10	

Page 1288

TABLE H

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

FEMALES	GROUP I		10,000 m	ng/m3		INDIVIDUAL BODI WEIGHT CHANGE (GRAMS)
			OF STUD)Y		
ANIMAL#		0-1	0-2	0-3	0-4	
3521		18	40	54	70	
3522		26	44	55	68	
3523		25	52	65	75	
3524		22	47	69	84	
3525		29	61	79	92	
3526		26	53	74	87	
3527		26	44	64	86	
3528		21	47	76	89	
3529		25	47	62	70	
3530		19	43	59	84	
MEAN		24	48	66	80	
S.D.		3.5	6.0	8.6	8.8	
N		10	10	10	10	

Page 1289

TABLE H

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

	WEEK	OF STU	DY	
ANIMAL#	0-1	0-2	0-3	0-4
4531	27	45	63	84
4532	26	46	66	86
4533	38	63	82	112
4534	17	39	61	72
4535	30	60	75	98
4536	19	36	50	62
4537	13	47	70	66
4538	11	44	56	69
4539	33	60	81	98
4540	17	32	57	69
MEAN	23	47	66	82
S.D.	9.0	10.6	10.9	16.9
N	10	10	10	10

Page 1290

TABLE H

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

	WEEK	OF STU	DY		
ANIMAL#	0-1	0-2	0-3	0-4	
5531	19	35	51	 54	
5532	19	34	59	56	
5533	40	71	96	98	
5534	20	49	81	78	
5535	19	43	61	65	
5536	25	47	63	68	
5537	22	51	68	60	
5538	25	45	57	41	
5539	10	18	49	48	
5540	19	36	58	47	
MEAN	22	43	64	61	
S.D.	7.7	13.6	14.4	16.7	
N	10	10	10	10	

Page 1291

TABLE I

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

	WEEK	OF STU	DY			
ANIMAL#	0	1	2	3	4	
1531	117	100	87	77	81	
1532	131	99	90	91	87	
1533	124	99	90	84	75	
1534	132	103	96	86	80	
1535	124	97	86	85	79	
1536	115	94	86	83	75	
1537	121	103	97	87	79	
.1538	116	98	82	82	73	
1539	119	96	86	81	77	
1540	136	109	87	98	81	
IEAN	124	100	89	85	79	
S.D.	7.3	4.1	4.7	5.7	4.1	
N	10	10	10	10	10	

.

Huntingdon Life Sciences 00-6127I Immunotoxicity Sub-Group

Page 1292

TABLE I

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

	WE	SEK (OF STU	DY		
ANIMAL#	С)	1	2	3	4
2521	. 131	L	103	96	68	68
2522	126	5	104	93	84	74
2523	125	5	102	98	83	78
2524	134	Į	108	101	SF	85
2525	135	5	118	96	90	82
2526	130)	102	94	86	81
2527	123	3	101	92	86	82
2528	117	7	93	89	83	76
2529	135	5	106	97	90	88
2530	132	2	108	93	86	85
MEAN	129	Ð	104	95	84	80
S.D.	6.0)	6.4	3.5	6.6	6.0
N	10)	10	10	9	10

SF=Spilled Feeder

.

Page 1293

TABLE I

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

	WEE	K OF ST	UDY		
ANIMAL#	. 0	1	2	3	4
3521	122	101	89	86	78
3522	121	96	90	84	73
3523	130	109	97	87	84
3524	123	104	95	92	SF
3525	126	102	92	86	80
3526	139	116	102	93	86
3527	122	105	93	88	81
3528	136	109	103	96	80
3529	125	108	93	84	80
3530	126	103	92	91	80
MEAN	127	105	95	89	80
S.D.	6.2	5.5	4.7	4.0	3.7
N	10	10	10	10	9

SF=Spilled Feeder

Page 1294

TABLE I

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

	Ŵ	VEEK	OF STU	DY		
ANIMAL#		0	1	2	3	4
4531	11		103	88	90	86
4532	12	28	112	99	98	84
4533	13	32	111	95	94	87
4534	11	14	100	93	87	79
4535	13	32	107	100	SF	87
4536	10	80	105	90	86	74
4537	13	33	96	101	91	90
4538	12	23	98	92	87	79
4539	12	27	106	92	87	79
4540	12	28	104	102	99	89
MEAN	12	24	104	95	91	83
S.D.	8.	. 6	5.1	4.9	5.0	5.2
N	1	LO	10	10	9	10

SF=Spilled Feeder

Page 1295

TABLE I

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

INDIVIDUAL FEED CONSUMPTION VALUES (GRAMS/KG/DAY)

	r	 משושות	OF STU			
ANIMAL#		0	1	2	3	4
5531	1:	22	103	94	88	77
5532	1:	26	106	102	95	70
5533	13	32	114	97	88	71
5534	1:	37	109	SF	SF	80
5535	12	26	103	96	86	75
5536	1:	29	116	98	92	69
5537	12	27	111	98	87	65
5538	15	55	117	111	92	76
5539	13	34	109	99	103	71
5540	13	33	111	101	99	76
MEAN	13	32	110	99	92	73
s.D.	9	. 2	4.8	4.9	5.9	4.6
N		10	10	9	9	10

SF=Spilled Feeder

FEMALES GROUP I

Huntingdon Life Sciences 00-6127I Immunotoxicity Sub-Group

0 mg/m3

Page 1296

.

TABLE J

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

ANIMAL TERMINATION HISTORY

	TYPE OF	DATE OF	WEEK OF	STUDY	
NIMAL#	DEATH	DEATH	STUDY	DAY	
1531	TERMINAL SACRIFICE	19-JUN-01	4	28	
1532	TERMINAL SACRIFICE	19-JUN-01	4	28	
1533	TERMINAL SACRIFICE	19-JUN-01	4	28	
1534	TERMINAL SACRIFICE	19-JUN-01	4	28	
1535	TERMINAL SACRIFICE	19-JUN-01	4	28	
1536	TERMINAL SACRIFICE	19-JUN-01	4	28	
1537	TERMINAL SACRIFICE	19-JUN-01	4	28	
1538	TERMINAL SACRIFICE	19-JUN-01	4	28	
1539	TERMINAL SACRIFICE	19-JUN-01	4	28	
1540	TERMINAL SACRIFICE	19-JUN-01	4	28	

Huntingdon Life Sciences 00-61271 Immunotoxicity Sub-Group

Page 1297

TABLE J

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

ANIMAL TERMINATION HISTORY

FEMALES GRO	000 II 2,000 mg/m3		-		
ANIMAL#	TYPE OF DEATH	date of death	WEEK OF STUDY	STUDY DAY	
2521	TERMINAL SACRIFICE	19-JUN-01	4	28	
2522	TERMINAL SACRIFICE	19-JUN-01	4	28	
2523	TERMINAL SACRIFICE	19-JUN-01	4	28	
2524	TERMINAL SACRIFICE	19-JUN-01	4	28	
2525	TERMINAL SACRIFICE	19-JUN-01	4	28	
2526	TERMINAL SACRIFICE	19-JUN-01	4	28	
2527	TERMINAL SACRIFICE	19-JUN-01	4	28	
2528	TERMINAL SACRIFICE	19-JUN-01	4	28	
2529	TERMINAL SACRIFICE	19-JUN-01	4	28	
2530	TERMINAL SACRIFICE	19-JUN-01	4	28	

TABLE J

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

ANIMAL TERMINATION HISTORY

	TYPE OF	DATE OF	WEEK OF	STUDY	
IIMAL#	DEATH	DEATH	STUDY	DAY	
3521	TERMINAL SACRIFICE	19-JUN-01	4	28	
3522	TERMINAL SACRIFICE	19-JUN-01	4	28	
3523	TERMINAL SACRIFICE	19-JUN-01	4	28	
3524	TERMINAL SACRIFICE	19-JUN-01	4	28	
3525	TERMINAL SACRIFICE	19-JUN-01	4	28	
3526	TERMINAL SACRIFICE	19-JUN-01	4	28	
3527	TERMINAL SACRIFICE	19-JUN-01	4 [.]	28	
3528	TERMINAL SACRIFICE	19-JUN-01	4	28	
3529	TERMINAL SACRIFICE	19-JUN-01	4	28	
3530	TERMINAL SACRIFICE	19-JUN-01	4	28	

Page 1298

Page 1299

.

TABLE J

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

ANIMAL TERMINATION HISTORY

	TYPE OF	DATE OF	WEEK OF	STUDY	
NIMAL#	DEATH	DEATH	STUDY	DAY	
4531	TERMINAL SACRIFICE	19-JUN-01	4	28	
4532	TERMINAL SACRIFICE	19-JUN-01	4	28	
4533	TERMINAL SACRIFICE	19-JUN-01	4	28	
4534	TERMINAL SACRIFICE	19-JUN-01	4	28	
4535	TERMINAL SACRIFICE	. 19-JUN-01	4	28	
4536	TERMINAL SACRIFICE	19-JUN-01	4	28	
4537	TERMINAL SACRIFICE	19-JUN-01	4	28	
4538	TERMINAL SACRIFICE	19-JUN-01	4	28	
4539	TERMINAL SACRIFICE	19-JUN-01	4	28	
4540	TERMINAL SACRIFICE	19-JUN-01	4	28	

Page 1300

TABLE J

GASOLINE ETHANOL VAPOR CONDENSATE: A 13-WEEK WHOLE-BODY INHALATION TOXICITY STUDY IN RATS WITH NEUROTOXICITY ASSESSMENTS AND 4-WEEK IN VIVO GENOTOXICITY AND IMMUNOTOXICITY ASSESSMENTS

ANIMAL TERMINATION HISTORY

MALES GROU	P V POSITIVE CONTROL				
	TYPE OF	DATE OF	WEEK OF	STUDY	
NIMAL#	DEATH	DEATH	STUDY	DAY	
5531	TERMINAL SACRIFICE	19-JUN-01	4	28	
5532	TERMINAL SACRIFICE	19-JUN-01	4	28	
5533	TERMINAL SACRIFICE	19-JUN-01	4	28	
5534	TERMINAL SACRIFICE	19-JUN-01	4	28	
5535	TERMINAL SACRIFICE	19-JUN-01	4	28	
5536	TERMINAL SACRIFICE	19-JUN-01	4	28	
5537	TERMINAL SACRIFICE	19-JUN-01	4	28	
5538	TERMINAL SACRIFICE	19-JUN-01	4	28	
5539	TERMINAL SACRIFICE	19-JUN-01	4	28	
5540	TERMINAL SACRIFICE	19-JUN-01	4	28	